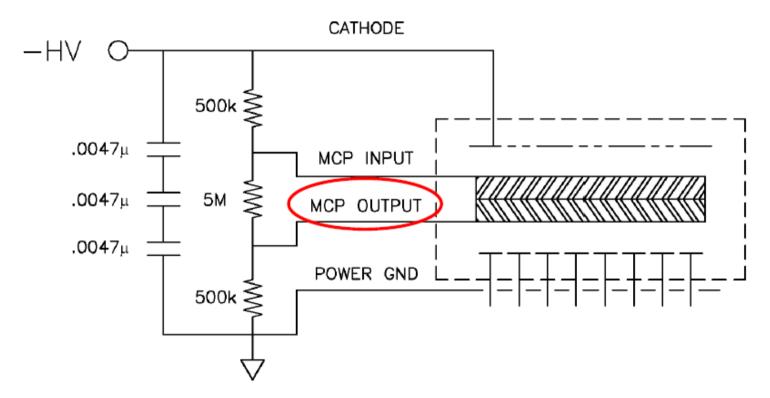


#### Samo Korpar

University of Maribor and Jožef Stefan Institute, Ljubljana Super KEKB - 2<sup>st</sup> Open Meeting, 16-19 December 2009

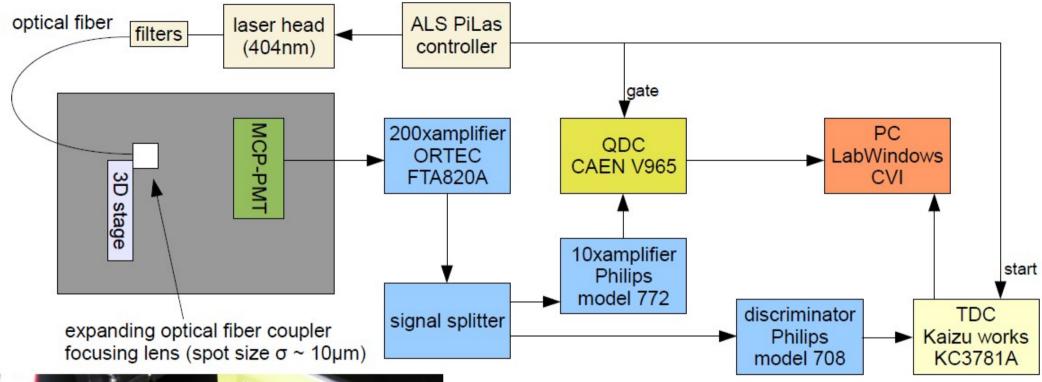
#### Outline:

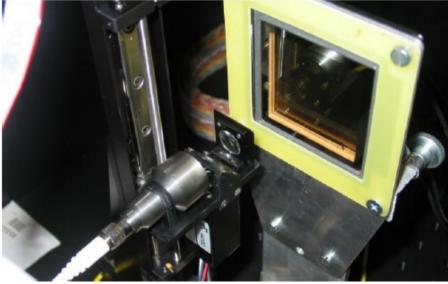

- MCP out timing
- waveform readout
- aging setup
- summary





#### Rok Dolenec


- output from multi channel plates (common for all channels)
- voltage between cathode and MCP set with resistor chain (external)



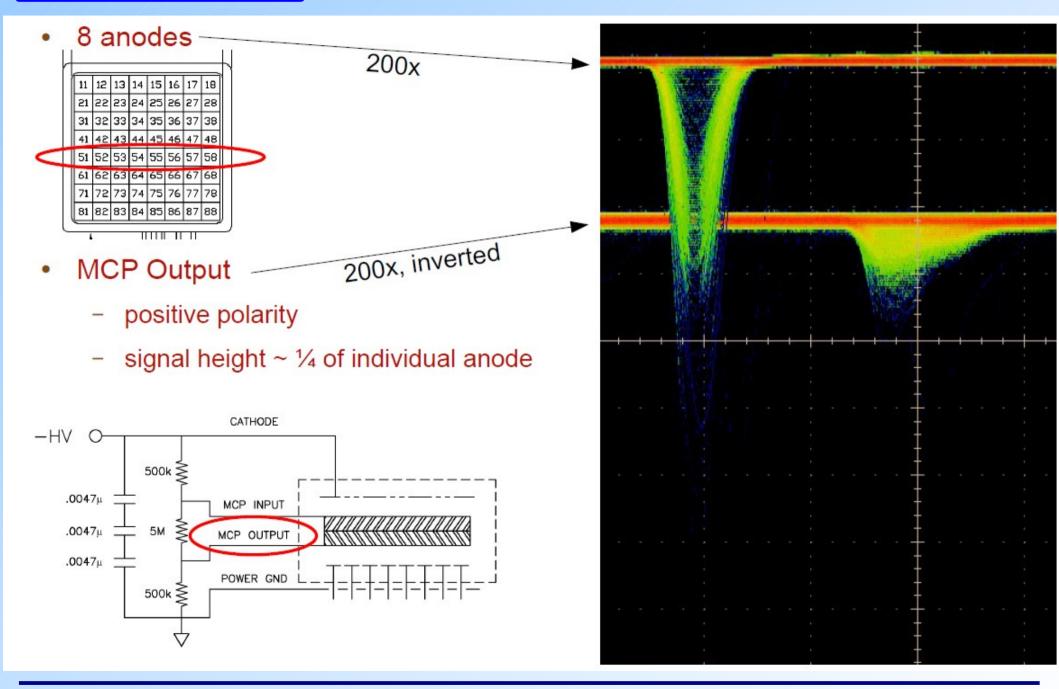

- idea: read timing for whole device from 1 channel
- 64 channels  $\rightarrow$  position
- MCP Out timing?



#### Rok Dolenec



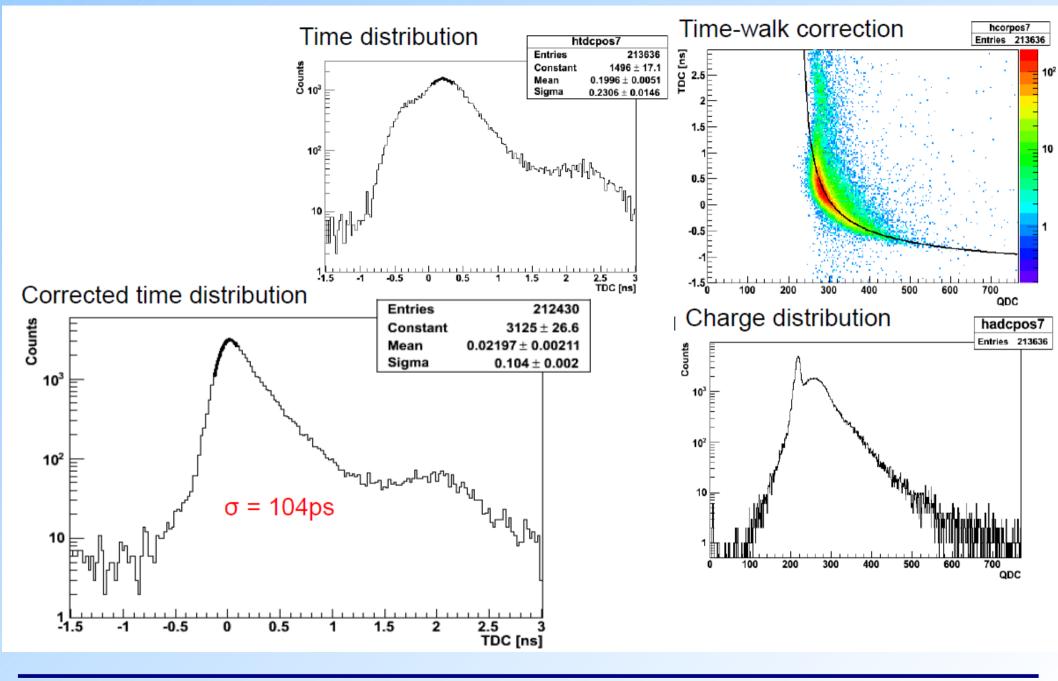



neutral density filters: illumination ~ 0.1

 100 photons on average (N<sub>ph</sub>)
 (amplification modified at higher illuminations/pulse heights)

MCP-PMT status (slide 3)



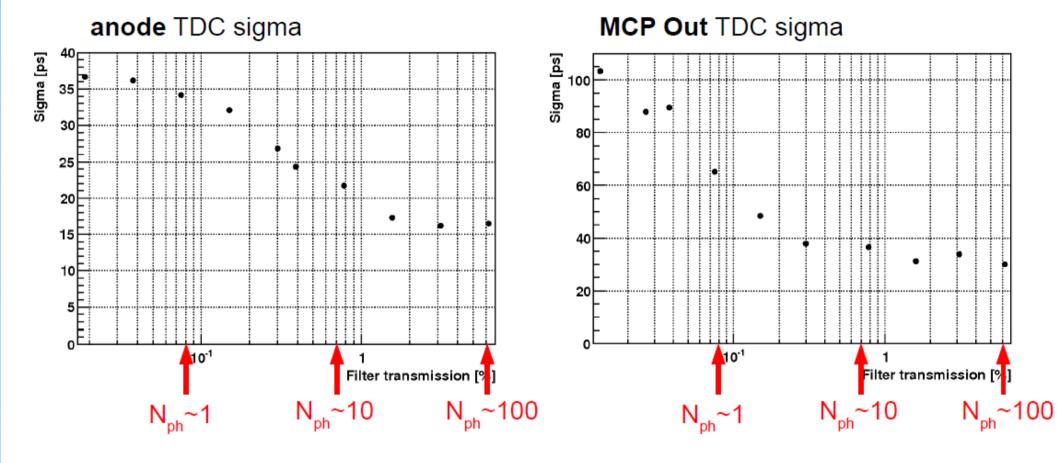

#### Rok Dolenec



March 17 – 19, 2009 Super KEKB - 2<sup>st</sup> Open Meeting MCP-PMT status (slide 4)



#### Rok Dolenec




March 17 – 19, 2009 Super KEKB - 2<sup>st</sup> Open Meeting MCP-PMT status (slide 5)



#### Rok Dolenec

filters: illumination ~ 0.1 – 100 photons an average (N<sub>ph</sub>)



- N<sub>ph</sub>~0.1: σ=37ps
- $N_{ph} \sim 10: \sigma = 22ps$
- $N_{ph}$ >10:  $\sigma$  $\rightarrow$ 16ps

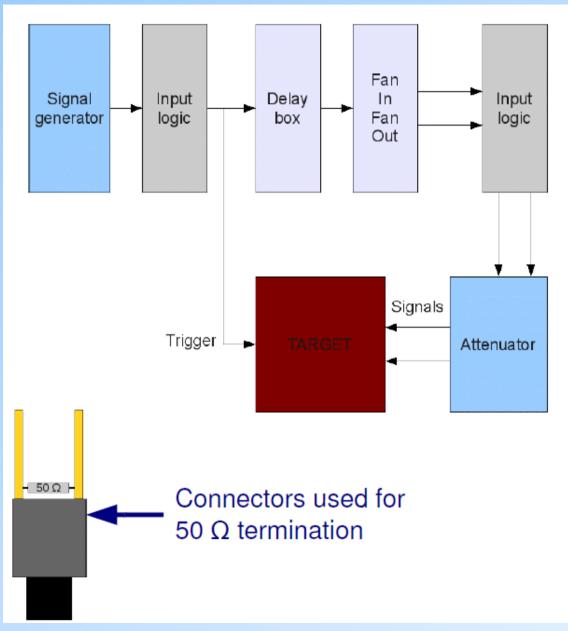
- $N_{ph} \sim 0.1$ :  $\sigma = 104 ps$
- $N_{ph} \sim 10: \sigma = 37 ps$
- $N_{ph}$ >10:  $\sigma$  $\rightarrow$ 30ps



#### Rok Dolenec

| N <sub>ph</sub> ~ 0.2          | 2        |         |         |         |         |         |                  |   |            | N <sub>ph</sub> | ~ 10     | )        |         |         |         |         |         |                  |            |
|--------------------------------|----------|---------|---------|---------|---------|---------|------------------|---|------------|-----------------|----------|----------|---------|---------|---------|---------|---------|------------------|------------|
| Correcte                       | d Sig    | ıma [   | [ps]    |         |         |         | hcors<br>Entries |   | na<br>64   | Co              | rrecte   | ed Sig   | gma     | [ps]    |         |         |         | hcors<br>Entries | igma<br>64 |
| ≻.<br>9_ <mark>-157.839</mark> | 171.774  | 136.199 | 119.256 | 110.909 | 114.27  | 137.959 | 154.104          |   | 170        | ≻. L∕           | 43.2883  | 41.1706  | 37.8219 | 37.4958 | 35.067  | 35.7394 | 35.6121 | 37.8415          | 75         |
| 6 124.454                      | 106.544  | 96.1108 | 93.0291 | 86.838  | 83.9452 | 90.0997 | 112.76           |   | 160        | 6               |          | 34.9178  | 33.6646 | 34.6336 | 33.1919 | 32.5487 | 32.9703 | 34.3942          | - 70       |
| 5 118.643                      | 94.2671  | 88.897  | 88.0841 | 86.5742 | 82.5869 | 83.9895 | 1 <b>09.54</b> 3 |   | 150<br>140 | 5               |          | 35.1033  | 34.37   | 33.0191 | 35.0462 | 34.0095 | 32.0847 | 33.6237          | -65<br>-60 |
| 4 123.53                       | 91.2127  | 89.9369 | 89.9232 | 90.0388 | 83.5411 | 87.8127 | 110.309          |   | 130        | 4               |          | 35.1188  | 39.3655 | 41.3062 | 53.81   | 62.7896 | 34.9658 | 34.8869          | - 55       |
| 3 124.007                      | 106.669  | 91.7251 | 89.9944 | 89.2451 | 91.3711 | 91.1616 | 112.482          | - | 120        | 3               | 34.182   | 38.2348  | 40.3397 | 44.4107 | 70.8823 | 59.8216 | 42.0187 | 32.5936          | - 50       |
| 2 121.571                      | 95.8388  | 92.5012 | 86.4267 | 84.7692 | 86.8688 | 84.1552 | 111.583          |   | 110        | 2               |          | 35.6857  | 38.7638 | 43.6039 | 52.0016 | 76.3203 | 34.0341 | 32.7889          | -45        |
| 1 136.105                      | 108.899  | 113.623 | 96.7153 | 86.7349 | 87.3824 | 91.7734 | 124.642          | - | 100        | -               |          | 34.2916  | 34.695  | 34.6084 | 32.5506 | 33.2279 | 31.4122 | 32.9856          | -40        |
| 0-169.182                      | 128.88   | 150.613 | 146.156 | 124.645 | 123.611 | 115.892 | 143.372          |   | 90         | C               | )38.8346 | 35.4811  | 35.5541 | 36.2861 | 31.2304 | 33.5908 | 31.9469 | 32.8503          | 35         |
| 0<br>• σ~1                     | 1<br>00p | 2       | 3       | 4       | 5       | 6       | 7<br>Ch.X        |   | -          | •               | ο<br>σ~4 | 1<br>0ps | 2       | 3       | 4       | 5       | 6       | 7<br>Ch.X        |            |

worse for some channels near center


.

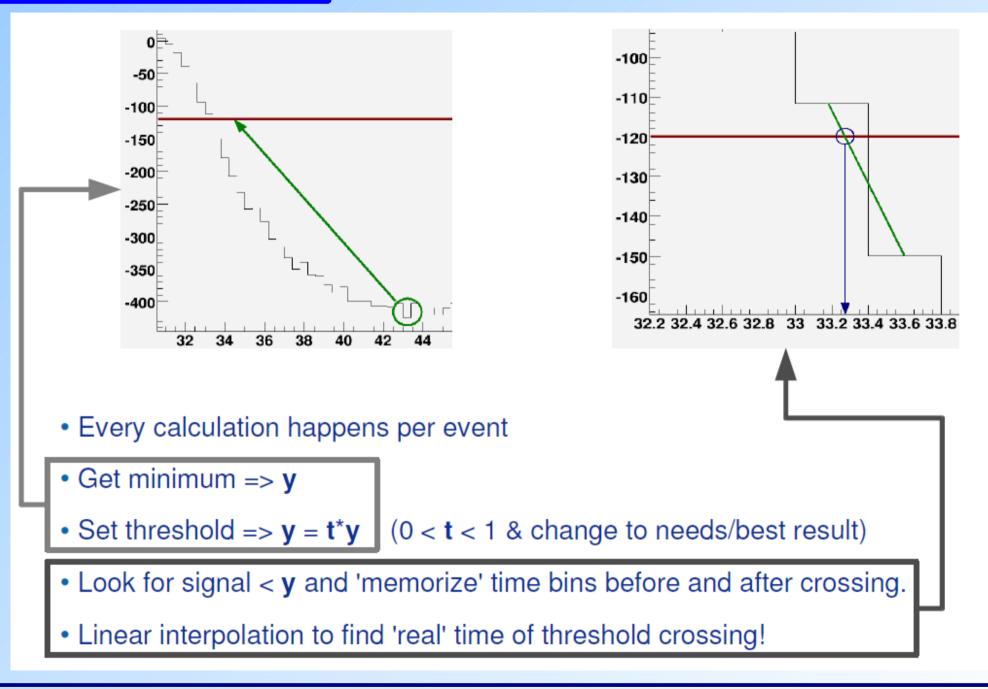
worse at edges of device



### Waveform readout 1

#### Ruben Verheyden

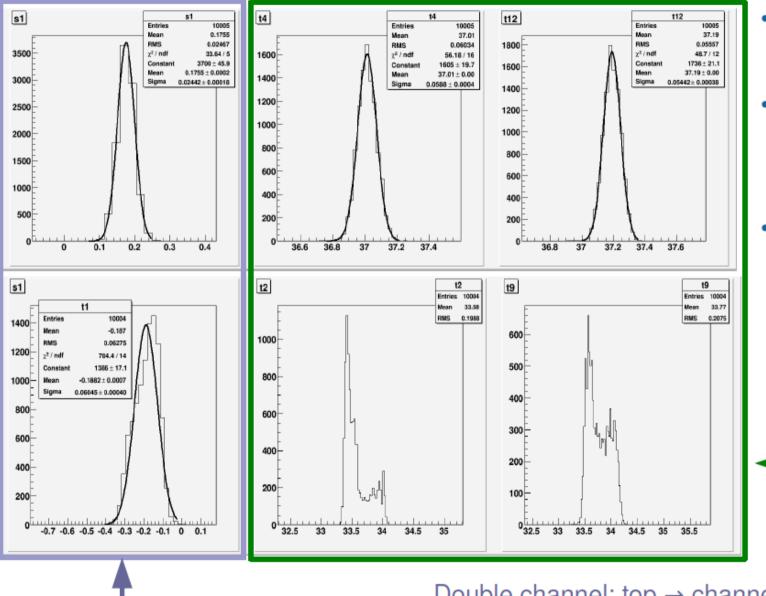



• Dual timer in a 'feedback' loop acts as a signal generator

- Signal transformed into logic pulse
- One logic pulse is send to trigger input of TARGET
- Second logic pulse is send to delay box
- After delay if gets split by a fan in fan out (FIFO)
- FIFO sends 2 copies to input logic
- 2 logic pulses get attenuated
- Attenuated pulses act as input signals



## Waveform readout 2


#### Ruben Verheyden





## Waveform readout 3

#### Ruben Verheyden



- Right → single channel timing.
- Left → Time difference between 2 signals on different channels.
- All signals have the same origin and go through same electronics (see setup slide).

Single channel: top → channel 4-12 bot. → channel 1-9

Double channel: top  $\rightarrow$  channel 4-12

Bottom  $\rightarrow$  channel 1-9



### Long term stability - Aging

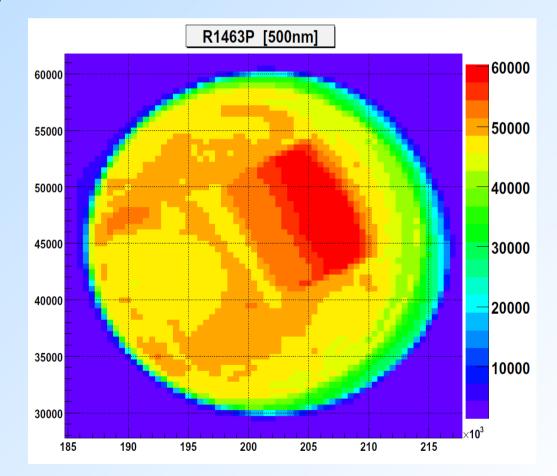
Several discussions with Emile Schyns, Group Product, Manager, Micro Channel Plates (final a good lead to the company)

Current performance (no Al protection layer):  $\rightarrow$  50% drop of efficiency after 10-15C/tube = 350-540mC/cm<sup>2</sup>

Expect ~ 10 mC/cm<sup>2</sup>/year on ARICH (scaling the TOP estimate)

Summer 08: move production to Europe, expect to improve the ageing by a factor > 5 (use a different scrubbbing technique, deep UV  $\rightarrow$  electrons)

 $\rightarrow$  Ageing most probably not a problem but need to be tested !




# Aging test

# SETUP:

- monochromator 200nm-900nm
- laser source: 400nm,630nm
- LED for aging (blue ~470nm)
- reference PMT for QE
- monitoring PMT
- current monitoring
- DAQ with scalers and ADC

Start aging test end of March



MCP-PMT status (slide 12)



# BACKUP SLIDES



## Photon detector summary

# Many tests have been performed since last meeting:

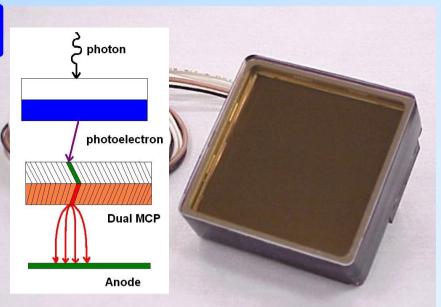
- magnetic field test of HAPD, MCP-PMT and MPPC  $\rightarrow$  all perform well some properties improve
- beam test of MPPC module in 120 GeV muon test beam at CERN
- accelerated aging test of HAPD (@ Hamamatsu)
- measurement of neutron fluencies in Belle
- tests of new ASIC generation

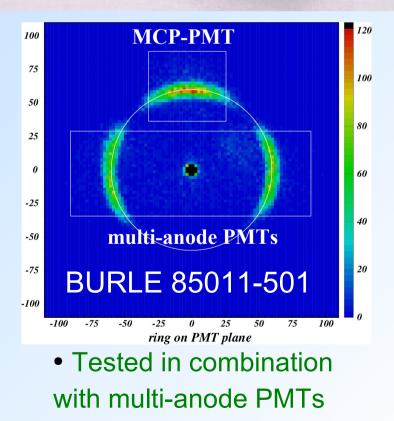
# To do list:

- aging and long term stability test of HAPD and MCP-PMT
- check possible improvements in photon detection efficiency of HAPD and MCP-PMT
- electronics test detectors with WFS and new ASIC
- test of MCP-PMT timing properties in magnetic field
- check the timing capabilities of HAPD

# **Decision on photon detector technology** $\rightarrow$ March meeting

March 17 – 19, 2009 Super KEKB - 2<sup>st</sup> Open Meeting

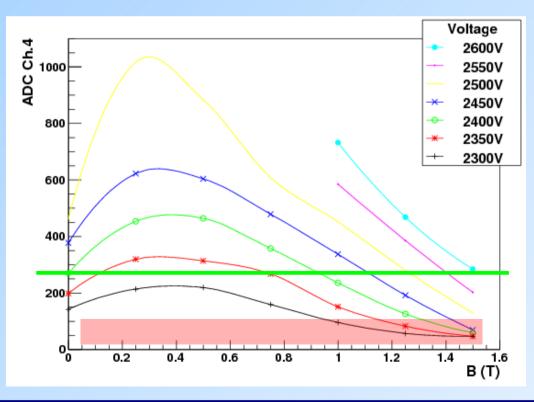


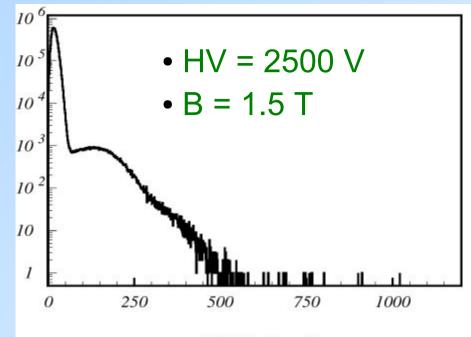


|                            | HAPD                                 | MCP-PMT             | MPPC     |
|----------------------------|--------------------------------------|---------------------|----------|
| N <sub>ph</sub>            | 7 (→14)                              | <b>10 (→15)</b>     | 30       |
| $\sigma_{v}$               | 14                                   | 15                  | 14       |
| B = 1.5T                   | OK (improved perf.)                  | OK (improved perf.) | OK       |
| long term<br>stab. (aging) | <b>OK</b> (HV stability?)            | OK?                 | OK       |
| neutron<br>damage          | leakage current?<br>→ signal / noise | <b>OK</b> (?)       | X        |
| production                 | 2.5 y                                | 2 y                 | ?        |
| pieces                     | < 600                                | < 1000              | < 500000 |
| cost /<br>piece            | < 7000 €                             | < 4000 €            | < 20 €   |
| electronic<br>s            | ASIC                                 | WFS                 | WFS      |
| channels                   | ~ 75k                                | ~ 60k               | ~ 120k   |
| material                   | ?                                    | ?                   | ?        |



# Photon detector candidate: MCP-PMT

- Model 85015/A1 (old sample 85011-501):
- two MCP steps chevron configuration
- 64 (8x8) anode pads @6.5 mm, gap ~ 0.5mm
- bialkali photocathode
- gain ~ 0.6 x 10<sup>6</sup> (@2400V)
- **10μm** (25μm) pores
- open area ratio ~ 70 % (60 %)
- size ~ **□59mm** (71mm)
- effective area fraction ~ 80% (52%)
- excellent timing < 40ps (50ps) single photon</li>
- K-MCP 4.4mm (6.1mm), MCP-A 3.7mm (5.2mm)
- window thickness 1.5mm (2mm)
- σ<sub>0</sub>~15 mrad (single photon)
   number of hits per track N ~ 10
- $\sigma_{v}$ ~ 4.7 mrad (per track)
- $\rightarrow \sim 5 \sigma \pi/K$  separation at 4 GeV/c






## Tests in magnetic field: ADC vs B

- gain drop observed in magnetic
   field 1.5T
- increase HV for ~200V to reach the same amplification as in B=0T





ADC ch. 2

• single photon ADC distribution measured in magnetic field

gain as a function of magnetic field for different operation voltages.

#### March 17 – 19, 2009 Super KEKB - 2<sup>st</sup> Open Meeting

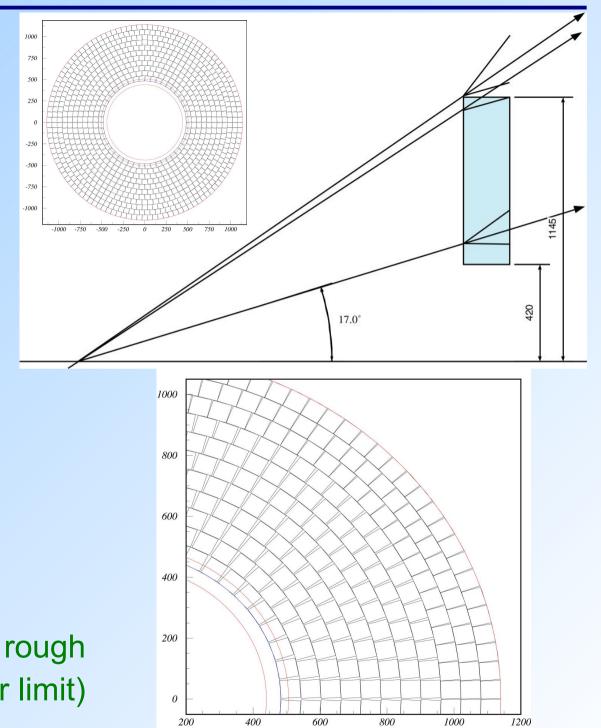
MCP-PMT status (slide 17)



#### Tests in magnetic field: charge sharing

10 Number of detected hits on individual channels as 10 a function of light spot position. 10 • HV = 2400 V 10 20 30 40 50 60 • B = 0 T x ch. 0 adc.tdc cut 10 • HV = 2500 V • B = 1.5 T 10 10 Reduced effects of 10 charge sharing and photo-electron 10 20 30 40 50 60 backscattering are x ch. 0 adc.tdc cut

March 17 – 19, 2009 Super KEKB - 2<sup>st</sup> Open Meeting MCP-PMT status (slide 18)




# Tiling scheme

• Number of MCP-PMTs and covered area fraction

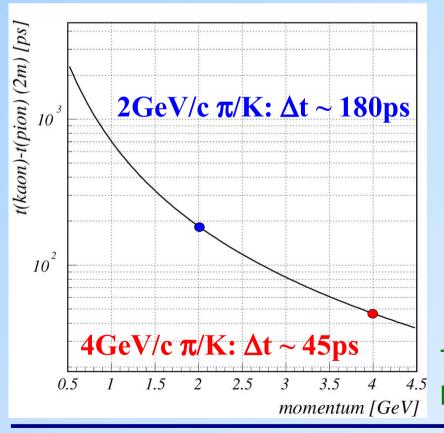
| ring | # PMTs | fraction   |
|------|--------|------------|
| 1    | 48     | 86%        |
| 2    | 54     | 87%        |
| 3    | 60     | 88%        |
| 4    | 66     | 88%        |
| 5    | 72     | 89%        |
| 6    | 78     | 89%        |
| 7    | 84     | 89%        |
| 8    | 90     | 90%        |
| 9    | 102    | 96%        |
| 10   | 108    | 96%        |
| 11   | 114    | 95%        |
| all  | 876    | <b>91%</b> |

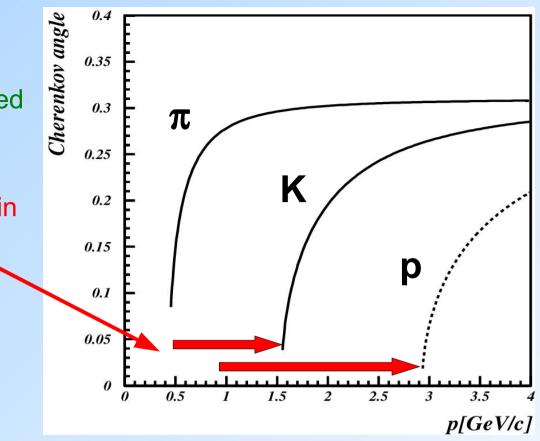
Total number <1000 and rough estimate for price < 4M€ (uper limit)





# Additional feature: RICH+TOF


Make use of fast photon detectors: measure time-of-flight with Cherenkov photons from PMT window and aerogel






## **TOF** capability

Using Cherenkov photons emitted in the PMT window (n~1.46) PID can be extended into the lower momentum region: Kaons and protons can be positively identified below the Cherenkov threshold in aerogel (n~1.05).





Cherenkov angle in aerogel (n=1.05) for pion, kaon and proton.

Time-of-flight difference for pions and kaons from IP to forward PID (2m).

March 17 – 19, 2009 Super KEKB - 2<sup>st</sup> Open Meeting MCP-PMT status (slide 21)



## Summary and plan

- XXX
- Plan:
- XXX

